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Abstract
We give a new mathematically rigorous proof for the fact that, when S is a dense
subset of [0, 2π), the rotated quadrature operators Qθ, θ ∈ S, of a single-mode
electromagnetic field constitute an informationally complete set of observables.

PACS numbers: 03.65.−w, 03.65.Ta, 03.65.Wj

1. Introduction

Since the pioneering works of Vogel and Risken [15] and Smithey et al [13] the measurement
of the rotated quadratures Qθ, θ ∈ [0, 2π), has formed one of the major tools in the quantum
state tomography, see, e.g., the compilation [11]. The basic idea behind the state reconstruction
is well known: the inverse Radon transform of the quadrature measurement statistics allows
one to reconstruct the Wigner function of the state in question and the Wigner function
separates states, so that the statistics uniquely determine the state. We do not question the
validity of this argument. However, the existing literature, which we are aware of, does not
give a full justification that this procedure actually applies to all possible states of a quantum
system. Therefore, in this paper, we wish to give a direct proof of the fact that the set
of quadrature observables Qθ, θ ∈ S, S ⊆ [0, 2π) is dense and informationally complete,
that is, the measurement outcome statistics p

Qθ

T of these observables uniquely determine the
state T.

There is a beautiful group theoretical proof of the informational completeness of
the observables Qθ, θ ∈ [0, 2π) [6]. This proof builds on a general method of
constructing informationally complete sets of observables using the theory of square-integrable
representations of unimodular Lie groups. The result in question is then obtained as a special
application of this theory to the Weyl–Heisenberg group. Due to the practical importance of
the result, we give an alternative direct proof of it. The proof of this fact in section 3 forms
the main body of this paper. In the final section we briefly comment on the measurability of
the quadrature observables.
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2. Basic notations and definitions

Let H be a complex separable Hilbert space, L(H) the set of bounded operators on H and
T (H) the set of trace class operators. We let ‖ · ‖1 denote the trace norm of T (H). (The
operator norm of L(H) will be denoted by ‖ · ‖.) When H is associated with the quantum
system (such as the single-mode electromagnetic field), the states of the system are represented
by positive operators T ∈ T (H) with unit trace, density operators, and the observables are
associated with the normalized positive operator measures defined on the Borel σ -algebra
B(R) of the real line1. Among them are the conventional von Neumann type of observables,
that is, projection-valued measures P : B(R) → L(H), or, equivalently, selfadjoint operators
in H.

The measurement outcome statistics of an observable E : B(R) → L(H) in a state T is
given by the probability measure X �→ tr[T E(X)] =: pE

T (X).

Definition 1. A set M of observables E : B(R) → L(H) is informationally complete, if any
two states S and T are equal whenever tr[T E(X)] = tr[SE(X)] for all E ∈ M and X ∈ B(R).

Thus, the informational completeness of a set M of observables means that the totality
of the measurement outcome distributions pE

T ,E ∈ M, determines the state T of the system.
Clearly, a set M of observables is informationally complete if and only if T = 0 whenever T
is a selfadjoint trace class operator with tr[T E(X)] = 0 for all E ∈ M and X ∈ B(R). We
will use this characterization in our proof.

Fix {|n〉 | n ∈ N} to be an orthonormal basis of H. (This is identified with the photon
number basis in the case where H is associated with the single-mode electromagnetic field.)
Here N = {0, 1, 2, . . .}. We will, without explicit indication, use the coordinate representation,
in which H is represented as L2(R) via the unitary map H � |n〉 �→ hn ∈ L2(R), where hn is
the nth Hermite function,

hn(x) = 1√
2nn!

√
π

Hn(x) e− 1
2 x2

,

and Hn is the nth Hermite polynomial2. Let a and a∗ denote the usual raising and lowering
operators associated with the above basis of H; they are considered as being defined on their
maximal domain

D(a) = D(a∗) =
{

ϕ ∈ H

∣∣∣∣∣
∞∑

n=0

n|〈ϕ|n〉|2 < ∞
}

.

Then define the operators Q = 1√
2
(a∗ + a) and P = i√

2
(a∗ − a), which, in the coordinate

representation are the usual multiplication and differentiation operators, respectively:
(Qψ)(x) = xψ(x), (Pψ)(x) = −i dψ

dx
(x). (Here the bar stands for the closure of an operator,

so that, e.g., Q is the unique selfadjoint extension of the essentially selfadjoint symmetric
operator 1√

2
(a∗ + a); see [12, chapter IV] or [3, chapter 12] for details concerning the domains

of these extensively studied operators.) In the case of the electromagnetic field, Q and P are
called the quadrature amplitude operators of the field. In addition, a = 1√

2
(Q + iP) and

a∗ = 1√
2
(Q − iP) (see, e.g., [12, p 73]). The Schwartz space S(R) of rapidly decreasing

C∞-functions is included in D(Q) ∩ D(P ) = D(a).

1 Normalized positive operator measure is a map E : B(R) → L(H) which is σ -additive in the weak operator
topology, and has the property E(R) = I , that is, for which X �→ tr[T E(X)] is a probability measure for each
positive trace one operator T.
2 Hermite polynomials are, of course, given by the following recursion relation: H0(x) = 1,H1(x) = 2x and
Hn+1(x) = 2xHn(x) − 2nHn−1(x).
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For a function g : R → R, we let g(k) denote the kth derivative of g (with g(0) = g),
provided it exists. We need the following elementary commutation relations, which hold
whenever ϕ ∈ S(R), and g : R → R is continuously differentiable and bounded:

(g(Q)a∗ − a∗g(Q))ϕ = 1√
2
g(1)(Q)ϕ, (1)

(g(Q)a − ag(Q))ϕ = − 1√
2
g(1)(Q)ϕ. (2)

Let N denote the operator a∗a. It is selfadjoint on its natural domain

D(N) =
{

ϕ ∈ H

∣∣∣∣∣
∞∑

n=0

n2|〈ϕ|n〉|2 < ∞
}

.

Now the phase shifting unitary operators are eiθN , and we can define the rotated quadrature
observables Qθ by

Qθ = eiθNQ e−iθN , θ ∈ [0, 2π).

The spectral measure of Qθ will be denoted by P Qθ : B(R) → L(H).

3. The proof

We need the so-called Dawson’s integral

daw(x) = e−x2
∫ x

0
et2

dt

(see, e.g., [1, pp 298, 299] or [14, chapter 42]). The following lemma lists those properties
of Dawson’s integral that we are going to use. Since the Dawson’s integral has been studied
extensively, they are probably well known. However, as we were unable to find these results
directly stated in the literature, we give a proof in the appendix; a reader familiar with the
results may skip that proof.

Lemma 1.

(a) daw : R → R is a C∞-function, and

lim
x→±∞ daw(k)(x) = 0 for all k ∈ N.

(b)

daw(1)(x) = 1

2

∞∑
n=0

(−1)nn!

2n(2n)!
H2n(x) for all x ∈ R,

where Hn is the nth Hermite polynomial.

Lemma 2. There exists a C∞-function f : R → R, such that

(i) each derivative f (n) of f, n = 0, 1, 2, . . . is a bounded function;
(ii) 〈n|f (Q)|n〉 = δn0, for all n ∈ N, where δ is the Kronecker delta.

Proof. We put f = 2 daw(1). According to lemma 1, f is a C∞-function and (i) holds.
Lemma 1 (b) gives the expansion

f (x) =
∞∑

n=0

(−1)nn!

2n(2n)!
H2n(x), x ∈ R. (3)

3
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Since the series in (3) converges pointwise, we get

f (x)h0(x) =
∞∑

n=0

(−1)nn!

2n(2n)!

√
22n(2n)!h2n(x) =

∞∑
n=0

(−1)nn!√
(2n)!

h2n(x)

for each x ∈ R. In addition,
∑∞

n=0(n!)2/(2n)! < ∞, so the series also converges in L2-norm.
Noting also that H 2

n h0 ∈ L2(R), we can justify the following computation:

〈hn|f (Q)hn〉 = 1

2nn!
〈H 2

n h0|f h0〉 = 1

2nn!

∞∑
k=0

(−1)kk!

2k(2k)!

〈
H 2

n h0|
√

22k(2k)!h2k

〉

= 1

2nn!

n∑
k=0

(−1)kk!

2k(2k)!

〈
H 2

n h0|H2kh0
〉

= 1

2nn!

n∑
k=0

(−1)kk!

2k(2k)!
√

π

∫
R

H2k(x)(Hn(x))2 e−x2
dx

= 1

2nn!

n∑
k=0

(−1)kk!

2k(2k)!
√

π

2k+n
√

π(2k)!(n!)2

(n − k)!(k!)2
=

n∑
k=0

(−1)kn!

(n − k)!k!

=
n∑

k=0

(−1)k
(

n

k

)
= lim

y→1
(1 − y)n = δn0.

Here the finite sum after the third equality is obtained by noting that h2k is orthogonal to H 2
n h0

whenever k > n, which is due to the fact that the latter function is a linear combination
of Hermite functions h0, . . . , h2n. The fifth equality follows from formula 7.375(2) of
[7, p 838]. �

Now we choose a function f satisfying the conditions of lemma 2. The function f will
remain fixed throughout the rest of the paper.

Lemma 3. 〈n + k|f (k)(Q)|n〉 = (−1)k
√

2kk!δ0n for all k, n ∈ N.

Proof. We proceed by induction with respect to k; the initial step is provided by condition (ii)
of lemma 2. The induction assumption is that for some k ∈ N, the equality

〈n + k|f (k)(Q)|n〉 = (−1)k
√

2kk!δ0n

holds for all n ∈ N. We must show that

〈n + k + 1|f (k+1)(Q)|n〉 = (−1)k+1
√

2k+1(k + 1)!δ0n, n ∈ N.

But by using (1), we get

〈n + k + 1|f (k+1)(Q)|n〉 =
√

2〈n + k + 1|f (k)(Q)a∗|n〉 −
√

2〈n + k + 1|a∗f (k)(Q)|n〉
=

√
2(n + 1)〈(n + 1) + k|f (k)(Q)|n + 1〉 −

√
2(n + k + 1)〈n + k|f (k)(Q)|n〉

= −
√

2(n + k + 1)(−1)k
√

2kk!δ0n = (−1)k+1
√

2k+1(k + 1)!δ0n

for all n ∈ N by the induction assumption. (Note, in particular, that the first term in the
expression following the second equality is indeed zero by the induction assumption, because
n + 1 > 0.) �

Lemma 4.

〈n + k|f (k+2l)(Q)|n〉 = 2l (−1)k
√

2kl!(l + k)!δln, k, l, n ∈ N, n � l.

4
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Proof. Now we use induction with respect to l, so the initial step l = 0 is given by lemma 3.
The induction assumption is that

〈n + k|f (k+2l)(Q)|n〉 = 2l (−1)k
√

2kl!(l + k)!δln

holds for some l ∈ N, all k ∈ N, and all n � l. We have to show that this also holds when l is
replaced by l + 1. Accordingly, let k ∈ N and n ∈ N with n � l + 1. Using the commutation
relation (2) and the induction assumption, we get

〈n + k|f (k+2(l+1))(Q)|n〉 = −
√

2〈n + k|f (k+2l+1)(Q)a|n〉 +
√

2〈n + k|af (k+2l+1)(Q)|n〉
= −

√
2n〈(n − 1) + (k + 1)|f ((k+1)+2l)(Q)|n − 1〉

+
√

2(n + k + 1)〈n + (k + 1)|f ((k+1)+2l)(Q)|n〉
= −

√
2n2l (−1)k+1

√
2k+1l!(l + k + 1)!δl,n−1

= (−1)k
√

2(l + 1)2l
√

2
√

2kl!(l + 1 + k)!δl+1,n

= 2l+1(−1)k
√

2k(l + 1)!(l + 1 + k)!δl+1,n.

Here the induction assumption was applied to the first term following the second equality with
n and k replaced by n − 1 and k + 1, and to the second term with n and k replaced by n and
k + 1. Here it is essential to note that n � l + 1 > l, which makes the second term zero. �

In order to construct the proof for the informational completeness of the quadratures, we
need some additional tools. First define, for each fixed k ∈ N and X ∈ B(R),

V k(X) :=
∫ 2π

0
e−ikθP Qθ (X) dθ ∈ L(H),

where the integral is to be understood in the σ -weak operator topology. Indeed, for each trace
class operator T, the map θ �→ tr[T P Qθ (X)] = tr[T eiθNP Q(X) e−iθN ] is continuous3, and
|tr[T EQθ (X)]| � ‖T ‖1‖P Qθ (X)‖ � ‖T ‖1, so the integral exists in the σ -weak sense, and
represents a bounded operator, with ‖V k(X)‖ � 2π .

Next, note that for each k ∈ N, the map X �→ V k(X) is an operator measure, that is,
σ -additive in the weak operator topology. In fact, if (Xn)n∈N is a sequence of mutually disjoint
sets in B(R), then for any l ∈ N,∣∣∣∣∣

l∑
n=0

e−ikθ 〈ϕ|P Qθ (Xn)ϕ〉
∣∣∣∣∣ �

l∑
n=0

〈ϕ|P Qθ (Xn)ϕ〉 � 〈ϕ|P Qθ
(∪∞

n=0 Xn

)
ϕ〉 � ‖ϕ‖2,

so the dominated convergence theorem can be applied to get
∞∑

n=0

〈ϕ|V k(Xn)ϕ〉 =
∞∑

n=0

∫ 2π

0
e−ikθ 〈ϕ|P Qθ (Xn)ϕ〉 dθ =

∫ 2π

0
e−ikθ 〈ϕ|P Qθ (∪∞

n=0Xn)ϕ〉 dθ

= 〈
ϕ
∣∣V k

( ∪∞
n=0 Xn

)
ϕ
〉
.

Let g : R → R be any bounded Borel function. Then the operator integral V k[g] =∫
g dV k can be defined in the σ -weak sense, as a bounded operator. This follows from the

fact that g is bounded and∣∣V k
T

∣∣(R) � 4 sup
X∈B(R)

|tr[T V k(X)]| � 8π‖T ‖1

3 This can easily be seen by, e.g., considering a positive trace class operator T, using its spectral resolution and
applying the strong continuity of the map θ �→ eiθN .

5
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for any trace class operator T, with
∣∣V k

T

∣∣ denoting the total variation of the complex measure
V k

T = tr[T V k(·)] (see, e.g., [5, p 97]). (The map X �→ tr[T V k(X)] is a complex measure,
because the weak and σ -weak operator topologies coincide in a norm-bounded set.)

Lemma 5. For any bounded function g : R → R, and a trace class operator T, we have

tr[T V k[g]] = 2π

∞∑
n=0

〈n|T |n + k〉〈n + k|g(Q)|n〉.

Proof. First note that 〈m|V k[g]|n〉 = tr[|n〉〈m|V k[g]] = ∫
g dV k

|n〉〈m| by definition. On the
other hand, for each X ∈ B(R), we get

V k
|n〉〈m|(X) =

∫ 2π

0
e−ikθ 〈m|P Qθ (X)|n〉 dθ = 〈m|P Q(X)|n〉

∫ 2π

0
e−ikθ eiθ(m−n) dθ.

This equals 2π〈n + k|P Q(X)|n〉 if m = n + k and zero otherwise. Hence,

〈n + k|V k[g]|n〉 = 2π

∫
g dP

Q
|n〉〈n+k| = 2π〈n + k|g(Q)|n〉,

and 〈m|V k[g]|n〉 = 0 whenever m �= n + k. Thus,

tr[T V k[g]] =
∞∑

n=0

〈n|T V k[g]|n〉 =
∞∑

n=0

∞∑
m=0

〈n|T |m〉〈m|V k[g]|n〉

= 2π

∞∑
n=0

〈n|T |n + k〉〈n + k|g(Q)|n〉.
�

Now we are ready to prove the actual result of the paper.

Theorem 1. Let S be a dense subset of [0, 2π). The set {P Qθ | θ ∈ S} of observables is
informationally complete.

Proof. Let T ∈ L(H) be a selfadjoint trace class operator, such that tr[T P Qθ (X)] = 0 for all
X ∈ B(R) and θ ∈ S. Since θ �→ tr[T P Qθ (X)] is continuous and S is dense it follows that
tr[T P Qθ (X)] = 0 for all X ∈ B(R) and θ ∈ [0, 2π).

Let k ∈ N be fixed. By the definition of the operator measure V k , the assumption implies
that

V k
T (X) = tr[T V k(X)] =

∫ 2π

0
e−ikθ tr[T P Qθ (X)] dθ = 0

for all X ∈ B(R). From the definition of the σ -weak integral V k[g] = ∫
g dV k , it follows

that tr[T V k[g]] = ∫
g dV k

T = 0 for any bounded Borel function g : R → R. Hence, by using
lemma 5, we get

∞∑
n=0

〈n|T |n + k〉〈n + k|g(Q)|n〉 = 0 (4)

for any bounded Borel function g : R → R. We show by induction with respect to n that
〈n|T |n+k〉 = 0 for all n ∈ N. First, put g = f (k) in (4) (recall that f was a function satisfying

6
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the assumptions of lemma 2). By lemma 4, this gives 〈0|T |k〉 = 0, which proves the initial
step. The induction assumption is that for some m ∈ N, 〈n|T |n+ k〉 = 0 for all n ∈ N, n � m.
We have to show that this implies 〈m + 1|T |(m + 1) + k〉 = 0. By the induction assumption
and (4), we have

∞∑
n=m+1

〈n|T |n + k〉〈n + k|f (k+2(m+1))(Q)|n〉 = 0,

where we have simply put g = f (k+2(m+1)), which is again a bounded Borel function. But,
according to lemma 4,

〈n + k|f (k+2(m+1))(Q)|n〉 = 0, n > m + 1,

and

〈(m + 1) + k|f (k+2(m+1))(Q)|m + 1〉 �= 0,

so that necessarily 〈m + 1|T |(m + 1) + k〉 = 0. This completes the induction proof.
We have thus established that 〈l|T |l + k〉 = 0 for all l, k ∈ N. Since T is selfadjoint, this

implies that T = 0 and the proof is complete. �

Note that the set S in the previous theorem can be chosen to be countable (e.g.,
S = [0, 2π) ∩ Q). Hence, in principle, it suffices to measure a sequence of quadrature
observables in order to determine the state of the system.

Though obvious, it may be worth noting that the quadrature observables Qθ are
not informationally complete in the sense of statistical expectation, that is, the numbers
tr[T Qθ ], θ ∈ [0, 2π), do not, in general, determine the state T; for instance, the number states
|n〉 are indistinguishable by the expectations, 〈n|Qθ |n〉 = 0 for all n and θ .

4. Concluding remarks

According to the result in the preceding section, the quadrature observables Qθ, θ ∈ S

(S ⊆ [0, 2π) is dense) constitute an informationally complete set of observables, i.e. the
measurement statistics p

Qθ

T , θ ∈ S, determine uniquely the state T of the quantum system. The
question of experimental implementation of these observables is thus of utmost importance.

The balanced homodyne detection with a strong auxiliary field is a well-developed method
of experimental quantum physics, and this method is known to yield the measurement statistics
of the quadrature observable Qθ , depending on the phase eiθ of the (one-mode) auxiliary field.
The heuristic physical argument behind this method is equally well known, see, e.g., [8, 10],
the detailed mathematical justification being, however, more involved.

If |z〉, z = reiθ , is the coherent state of the (one-mode) auxiliary field, then the actually
measured observable in the balanced homodyne detection is given by a semispectral measure
Ez, whose first moment operator Ez[1] is an extension of the restriction of the quadrature
operator Qθ on the domain D(a) of the signal mode operator a, and whose noise operator
Ez[2] − Ez[1]2 equals with the operator 1

2 r−2N (where N = a∗a). Clearly, these results
suggest that the high-amplitude limit of Ez is the spectral measure P Qθ of Qθ , notably since
the spectral measures are known to be exactly those semispectral measures whose noise
operators equal to zero. There is, indeed, a rigorous quantum-mechanical proof of the fact
that in the high-amplitude limit the observable Ez tends to the spectral measure of Qθ , though
the actual meaning of this limit requires more caution [9].

7
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The balanced homodyne detection scheme can thus be used to collect the statistics of the
quadrature observables. According to the result proved in this paper these statistics determine
the state of the system.
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Appendix. The proof of lemma 1

To begin the proof of the lemma, we first note that the Dawson’s integral is clearly a C∞-
function. We prove (a) by using the expansion

daw(x) = 1

2x

n−1∑
j=0

(2j − 1)!!

(2x2)j
+

(2n − 1)!!

2n
Rn(x),

where

Rn(x) = e−x2

x2n−1

∞∑
j=0

x2j

j !(2j − 2n + 1)

and n = 1, 2, 3, . . . (see [14, equation 42:6:5, p 407]). Since each derivative is either even or
odd, it suffices to consider the limit x → ∞. Clearly, any derivative of the first part tends to
zero at this limit, for any choice of n. As for Rn, it is easy to see that for any given k, we get
limx→∞ R(k)

n (x) = 0 for sufficiently large n. Indeed, let

Sn(y) =
∞∑

j=0

yj

j !(2j − 2n + 1)
,

so that Rn(x) = e−x2

x2n−1 Sn(x
2). Since the power series Sn(y) is clearly convergent for all y ∈ R,

it can be differentiated k times (for any k ∈ N) to get

S(k)
n (y) =

∞∑
j=k

yj−k

(j − k)!(2j − 2n + 1)
.

From this we see that
∣∣S(k)

n (y)
∣∣ � ey for any y > 0 and n ∈ N. Now for a fixed k ∈ N, put,

e.g., n = k + 1. Since R(k)
n (x) is clearly a finite sum of terms of the form Al,l′

e−x2

x2n−1−l S
(l′)
n (x2),

with −k � l � k, 0 � l′ � k, and Al,l′ a constant, it follows that limx→∞ R(k)
n (x) = 0. The

proof of (a) is complete.
To prove (b), consider the series

1

2

∞∑
n=0

(−1)nn!

2n(2n)!
H2n(x). (A.1)

We first note that the well-known relation d
dx

Hl(x) = 2lHl−1(x), l = 1, 2, 3, . . . , implies

dm

dxm
H2n(x) = 2n(2n − 1) · · · (2n − m + 1)2mH2n−m(x), m � 2n. (A.2)

8
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Using the estimate |Hn(x)| � e
1
2 x2

K2
1
2 n

√
n!, where K > 0 is a constant ([1, 22.14.17,

p 787]), we get∣∣∣∣ (−1)nn!

2n(2n)!

dm

dxm
H2n(x)

∣∣∣∣ � 2
m
2 K

n!2n(2n − 1) · · · (2n − m + 1)
√

(2n − m)!

(2n)!
e

1
2 x2

� 2
m
2 K

(2n)mn!√
(2n)!

e
1
2 x2

for all n,m ∈ N,m � 2n. Now
∑∞

n=0
(2n)mn!√

(2n)!
< ∞ for any m ∈ N by the ratio test,

which shows that the series obtained by differentiating (A.1) m times term by term converges
uniformly in bounded intervals. Consequently, that series represents the mth derivative of the
original series (A.1), the latter converging to some C∞-function F : R → R uniformly in
bounded intervals.

By using again the formula d
dx

Hl(x) = 2lHl−1(x), we get

2F (2m)(x) = 22m

∞∑
n=m

n!(−1)nH2(n−m)(x)

2n(2(n − m))!
; (A.3)

2F (2m+1)(x) = 22m+1
∞∑

n=m+1

n!(−1)nH2(n−m)−1(x)

2n(2(n − m) − 1)!
. (A.4)

In order to calculate the MacLaurin series of F, we need the expansion

(1 − x)−(m+1) =
∞∑

n=0

(
m + n

n

)
xn, −1 < x < 1, (A.5)

which can be obtained from the binomial series (see 3.6.9 in [1, p 15]).
Now, using (A.3), the identity H2(n−m)(0) = (−1)n−m(2(n − m))!/(n − m)!, n � m

(22.4.8 in [1, p 777]), and (A.5) with x = 1
2 , we get

2F (2m)(0) = 22m(−1)m
∞∑

n=m

n!

2n(n − m)!
= 2m(−1)m

∞∑
n=0

(n + m)!

2nn!

= 2m(−1)mm!
∞∑

n=0

(
n + m

n

)
1

2n
= 22m+1(−1)mm!.

Since F (2m+1)(0) = 0 by (A.4) and the fact that Hl(0) = 0 for odd l, we get the following
MacLaurin series for F:

∞∑
m=0

(−1)mm!

(2m)!
(2x)2m, x ∈ R. (A.6)

This is exactly the MacLaurin series for the first derivative of the Dawson’s integral, since

daw(x) =
∞∑

m=0

(−1)mm!22m

(2m + 1)!
x2m+1

(see, e.g., [14, p 406]).
In order to prove that series (A.6) actually converges to F (pointwise for all x ∈ R),

we have to show that for each x ∈ R, the corresponding remainder F (k)(ξk)x
k/k!, where

9



J. Phys. A: Math. Theor. 41 (2008) 175206 J Kiukas et al

ξk ∈ [−|x|, |x|], goes to zero as k → ∞. By applying the estimate |Hl(y)| � Ke
1
2 y2

2l/2
√

l!
to (A.3) and (A.4), we get

2|F (2m)(y)| � e
1
2 y2

2mK

∞∑
n=0

(n + m)!√
(2n)!

= K e
1
2 y2

2mm!
∞∑

n=0

(
n + m

n

)
n!√
(2n)!

;

2|F (2m+1)(y)| � e
1
2 y2√

22mK

∞∑
n=0

(n + m + 1)!√
(2n + 1)!

=
√

2K e
1
2 y2

2m(m + 1)!
∞∑

n=0

(
n + m + 1

n

)
n!√

(2n + 1)!

for all y ∈ R. It is easy to see by induction that n!/
√

(2n)! � n/2n−1 for all n � 1;
using this, as well as the relation (m + 1)2m+1 = ∑∞

n=0

(
m+n

n

)
n
2n which is obtained by

differentiating (A.5) and putting x = 1
2 , we conclude that 2|F (2m)(y)| � 4K e

1
2 y2

22m(m + 1)!,

and 2|F (2m+1)(y)| � 4
√

2Ke
1
2 y2

22m+1(m + 2)! for all y ∈ R. Consequently,

|F (2m)(ξ)x2m|
(2m)!

� 2K e
1
2 x2 (2|x|)2m(m + 1)!

(2m)!
,

|F (2m+1)(ξ)x2m+1|
(2m + 1)!

� 2
√

2K e
1
2 x2 (2|x|)2m+1(m + 2)!

(2m + 1)!
,

whenever x ∈ R, ξ ∈ [−|x|, |x|] and m ∈ N. It is easy to see that for each fixed x ∈ R, the
right-hand sides of the inequalities tend to zero as m → ∞. Hence, we have shown that

F(x) =
∞∑

n=0

(−1)mm!

(2m)!
(2x)2m = daw(1)(x), x ∈ R.

This completes the proof of lemma 1.
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